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Setting the Scene

e |dentifying crop types from satellite imagery is hard
from a human perspective - can a machine do better?




§1. Data Pipeline
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Data Retrieval

® Unsure of the geographic dependency, we decided to
focus exclusively on data from the UK.

® The raw, unfiltered data query retrieved a heavily
skewed dataset, towards just a few crop types.

® A modest target of only 5000 instances per class can
already only be achieved by a select few crop types.

Raw Data Class Frequencies - United Kingdom
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Data Filtering

Data must be within an effective imagery period.
That is, for each crop type, we must define a lower
bound for when the crop is first perceivable and an
upper bound for it's expected date of harvest.
Making sure that all field geometries are valid,
contained in the raster, etc.

There were many other important aspects to consider

when filtering down our raw dataset to make the data
fully effective.



Post-Filtering Analysis

Crop Type

Classification )

Setting the Scene e After filtering down to effective data, we are left with
§1. Data Pipeline significantly less class counts.
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Data Processing

® |ndividual fields need to be clipped from the raw
satellite images.

® |Images needs to be resampled to make it more
manageable (RAM requirements, etc.).

® |ndividual Bands need to be combined to make useful
features e.g. NDVI.

® The data needs to be standardized - normalization for
ML performance and padding/cropping to square
images.



Extracting Individual Fields

Crop Type . R, . L
Classification e We first clip individual fields from the satellite images,

Setting the Scene using the geospatial raster and field polygon data.
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Spectral Band Information

Crop Type i i
Classification ® Our images contain several spectral bands: red, green,

STy e e blue and Near Infrared (NIR).
§1. Data Pipeline

1 Do R ® From these bands we can calculate useful features such
S as the NDVI, which gives us a measure of the amount

1.3 Data Processing

of photosynthesis and hence biomass within an image.
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Resampling the Data
® Qur images need to be resampled to make the data

size more managable. Data is resampled to a common
desired spatial resolution.

Planet Data

60%

Downsample

l Sentinel2 Data ‘
250%
E—
Upsample
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Data Standardization

® We normalize our pixel values to [0, 1] to make them
more suited to our ML algorithm.

We also crop/pad images to a standardized dimension.

Cropping by the fields 'centre of mass’ achieved the
best results.




Data Exportation

s ® When making the test:train split, there are some

S — important things to consider. For example, splitting so
§1. Data Pipeline that training data contains few repeats of fields in the
LRl test set, to avoid overfitting.
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5000

® To optimise training performance, we augmented some

Data Augmentation

of our training set.

® Augmentation included random rigid body

transformations and applying a small, spatially uniform,

Gaussian noise.

Augmented Data

Barley (spring)

Barley (Winter)
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Uncropped land

Augmented Field
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§2. Timeseries Analysis

® |t became apparent that the problem had a potentially
strong time dependence.

e Crops appearance and features are dynamic and are
constantly evolving throughout the growth cycle.

® A fully functional model will likely need be able to
couple both the spatial and temporal aspects of the
problem.
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® An individual field is dynamic throughout

period.

Evolution of a Sample Field

Barley NDVI Evolution

Days Since Planting: 40
Average NDVI Score: 0.6948312520980835

it's growth
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Crop Type Spectral Footprints

® There are some distinct correlations within a single
crop type timeseries.

Evolution of Avg. NDVI Scare of Barley Over Growth Cycle: Evolution of Avg. NIR Score of Barley Over Growth Cycle:
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Comparing Crop Types

® When comparing crop types it seems that crops tend to
follow a similar trend, with different levels of noisyness.

Evolution of Avg. NDVI Score of Crops Over Their Growth Cycle: Evolution of Avg. NIR Score of Crops Over Their Growth Cycle:
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Some Final Thoughts

® Quantifying these results into features of a machine
learning model is a difficult task.

® |t is not immediately obvious how to couple the
temporal aspect with the spatial nature of the problem.

® |t is likely that seasonality effects on an annual basis
could change the qualitative behaviour of the
timeseries, although this is not something | explored.
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