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Setting the Scene

• Identifying crop types from satellite imagery is hard
from a human perspective - can a machine do better?
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Data Retrieval

• Unsure of the geographic dependency, we decided to
focus exclusively on data from the UK.

• The raw, unfiltered data query retrieved a heavily
skewed dataset, towards just a few crop types.

• A modest target of only 5000 instances per class can
already only be achieved by a select few crop types.
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Data Filtering

• Data must be within an effective imagery period.
That is, for each crop type, we must define a lower
bound for when the crop is first perceivable and an
upper bound for it’s expected date of harvest.

• Making sure that all field geometries are valid,
contained in the raster, etc.

• There were many other important aspects to consider
when filtering down our raw dataset to make the data
fully effective.
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Post-Filtering Analysis

• After filtering down to effective data, we are left with
significantly less class counts.
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Data Processing

• Individual fields need to be clipped from the raw
satellite images.

• Images needs to be resampled to make it more
manageable (RAM requirements, etc.).

• Individual Bands need to be combined to make useful
features e.g. NDVI.

• The data needs to be standardized - normalization for
ML performance and padding/cropping to square
images.
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Extracting Individual Fields

• We first clip individual fields from the satellite images,
using the geospatial raster and field polygon data.
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Spectral Band Information

• Our images contain several spectral bands: red, green,
blue and Near Infrared (NIR).

• From these bands we can calculate useful features such
as the NDVI, which gives us a measure of the amount
of photosynthesis and hence biomass within an image.
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Resampling the Data
• Our images need to be resampled to make the data

size more managable. Data is resampled to a common
desired spatial resolution.

Planet Data

60%−−−−−−−→
Downsample

Sentinel2 Data

250%−−−−−−→
Upsample
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Data Standardization

• We normalize our pixel values to [0, 1] to make them
more suited to our ML algorithm.

• We also crop/pad images to a standardized dimension.
Cropping by the fields ’centre of mass’ achieved the
best results.
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Data Exportation

• When making the test:train split, there are some
important things to consider. For example, splitting so
that training data contains few repeats of fields in the
test set, to avoid overfitting.

30% Train:Test Split
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Data Augmentation

• To optimise training performance, we augmented some
of our training set.

• Augmentation included random rigid body
transformations and applying a small, spatially uniform,
Gaussian noise.

Augmented FieldAugmented Data
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§2. Timeseries Analysis

• It became apparent that the problem had a potentially
strong time dependence.

• Crops appearance and features are dynamic and are
constantly evolving throughout the growth cycle.

• A fully functional model will likely need be able to
couple both the spatial and temporal aspects of the
problem.
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Evolution of a Sample Field

• An individual field is dynamic throughout it’s growth
period.

Barley NDVI Evolution
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Crop Type Spectral Footprints

• There are some distinct correlations within a single
crop type timeseries.
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Comparing Crop Types

• When comparing crop types it seems that crops tend to
follow a similar trend, with different levels of noisyness.
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Some Final Thoughts

• Quantifying these results into features of a machine
learning model is a difficult task.

• It is not immediately obvious how to couple the
temporal aspect with the spatial nature of the problem.

• It is likely that seasonality effects on an annual basis
could change the qualitative behaviour of the
timeseries, although this is not something I explored.
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